Deficiency of Na+/K(+)-ATPase and sarcoplasmic reticulum Ca(2+)-ATPase in skeletal muscle and cultured muscle cells of myotonic dystrophy patients.
نویسندگان
چکیده
Since defective regulation of ion transport could initiate or contribute to the abnormal cellular function in myotonic dystrophy (MyD), Na+/K(+)-ATPase and sarcoplasmic reticulum (SR) Ca(2+)-ATPase were examined in skeletal muscle and cultured skeletal muscle cells of controls and MyD patients. Na+/K(+)-ATPase was investigated by measuring ouabain binding and the activities of Na+/K(+)-ATPase and K(+)-dependent 3-O-methylfluorescein phosphate (3-O-MFPase). SR Ca(2+)-ATPase was analysed by e.l.i.s.a., Ca(2+)-dependent phosphorylation and its activities with ATP and 3-O-methylfluorescein phosphatase (3-O-MFP). In MyD muscle the K(+)-dependent 3-O-MFPase activity and the activity and concentration of SR Ca(2+)-ATPase were decreased by 40%. In cultured muscle cells from MyD patients the activities as well as the concentration of both Na+/K(+)-ATPase and SR Ca(2+)-ATPase were reduced by about 30-40%. The ouabain-binding constant and the molecular activities, i.e. catalytic-centre activities with ATP or 3-O-MFP, of Na+/K(+)-ATPase and SR Ca(2+)-ATPase were similar in muscle as well as in cultured cells from both controls and MyD patients. Thus the decreased activity of both ATPases in MyD muscle is caused by a reduction in the number of their molecules. To check whether the deficiency of ATP-dependent ion pumps is a general feature of the pathology of MyD, we examined erythrocytes from the same patients. In these cells the Ca2+ uptake rate and the Ca(2+)-ATPase activity were lower than in controls, but the Ca(2+)-ATPase concentration was normal. Thus the reduced Ca(2+)-ATPase activity is caused by a decrease in the molecular activity of the ion pump. The Na+/K(+)-ATPase activity is also lower in erythrocytes of MyD patients. It is concluded that the observed alterations in ion pumps may contribute to the pathological phenomena in the muscle and other tissues in patients with MyD.
منابع مشابه
Ion transport in human skeletal muscle cells: disturbances in myotonic dystrophy and Brody's disease.
After excitation of skeletal muscle, the disturbed ion homeostasis is restored by Na+, K+ ATPase of the sarcolemma and Ca2+ ATPase of the sarcoplasmic reticulum (SR). Contrary to Na+, K+ ATPase, the concentration and isoenzyme distribution of SR Ca2+ ATPase in human skeletal muscle depend on fibre type and age. In cultured human muscle cells the concentration and activity of Na+, K+ ATPase and ...
متن کاملMyotonic Dystrophy Protein Kinase is Involved in the Modulation of the Ca
Myotonic dystrophy (DM), the most prevalent muscular disorder in adults, is caused by (CTG) n -repeat expansion in a gene encoding a protein kinase (DM protein kinase; DMPK) and involves changes in cytoarchitecture and ion homeostasis. To obtain clues to the normal biological role of DMPK in cellular ion homeostasis, we have compared the resting [Ca 2 1 ] i , the amplitude and shape of depolari...
متن کاملAltered mRNA splicing of the skeletal muscle ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase in myotonic dystrophy type 1.
Myotonic dystrophy type 1 (DM1) is a debilitating multisystemic disorder caused by a CTG repeat expansion in the DMPK gene. Aberrant splicing of several genes has been reported to contribute to some symptoms of DM1, but the cause of muscle weakness in DM1 and elevated Ca2+ concentrations in cultured DM muscle cells is unknown. Here, we investigated the alternative splicing of mRNAs of two major...
متن کاملMyotonic dystrophy protein kinase is involved in the modulation of the Ca2+ homeostasis in skeletal muscle cells.
Myotonic dystrophy (DM), the most prevalent muscular disorder in adults, is caused by (CTG)n-repeat expansion in a gene encoding a protein kinase (DM protein kinase; DMPK) and involves changes in cytoarchitecture and ion homeostasis. To obtain clues to the normal biological role of DMPK in cellular ion homeostasis, we have compared the resting [Ca2+]i, the amplitude and shape of depolarization-...
متن کاملCatalytic activity and heat production by the Ca(2+)-ATPase from sea cucumber (Ludwigothurea grisea) longitudinal smooth muscle: modulation by monovalent cations.
In muscle cells, excitation-contraction coupling involves the translocation of Ca(2+) between intracellular compartments and the cytosol. Heat derived from the hydrolysis of ATP by the sarcoplasmic reticulum Ca(2+)-ATPase of skeletal muscle plays an important role in the thermoregulation and energy balance of the cell. Although several Ca(2+)-ATPase isoforms have been described in vertebrates, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 293 ( Pt 1) شماره
صفحات -
تاریخ انتشار 1993